A Regularized Gradient Projection Method for the Minimization Problem
نویسندگان
چکیده
منابع مشابه
An Efficient Method for Large-Scale l1-Regularized Convex Loss Minimization
Convex loss minimization with l1 regularization has been proposed as a promising method for feature selection in classification (e.g., l1-regularized logistic regression) and regression (e.g., l1-regularized least squares). In this paper we describe an efficient interior-point method for solving large-scale l1-regularized convex loss minimization problems that uses a preconditioned conjugate gr...
متن کاملIterative Reweighted Singular Value Minimization
In this paper we study general lp regularized unconstrained matrix minimization problems. In particular, we first introduce a class of first-order stationary points for them. And we show that the first-order stationary points introduced in [11] for an lp regularized vector minimization problem are equivalent to those of an lp regularized matrix minimization reformulation. We also establish that...
متن کاملA Fast Numerical Method for Solving a Regularized Problem Associated with Obstacle Problems
Kirsi Majava and Xue-Cheng Tai [12] proposed a modified level set method for solving a free boundary problem associated with unilateral obstacle problems. The proximal bundle method and gradient method were applied to solve the nonsmooth minimization problems and the regularized problem, respectively. In this paper, we extend this approach to solve the bilateral obstacle problems and employ Run...
متن کاملA Regularized Newton Method for Computing Ground States of Bose-Einstein Condensates
In this paper, we propose a regularized Newton method for computing ground states of Bose-Einstein condensates (BECs), which can be formulated as an energy minimization problem with a spherical constraint. The energy functional and constraint are discretized by either the finite difference, or sine or Fourier pseudospectral discretization schemes and thus the original infinite dimensional nonco...
متن کاملSolving the L1 regularized least square problem via a box-constrained smooth minimization
In this paper, an equivalent smooth minimization for the L1 regularized least square problem is proposed. The proposed problem is a convex box-constrained smooth minimization which allows applying fast optimization methods to find its solution. Further, it is investigated that the property ”the dual of dual is primal” holds for the L1 regularized least square problem. A solver for the smooth pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012